
EXCEPTIONAL HANDLING IN JAVA 

 

The Exception Handling in Java is one of the powerful mechanism to handle the runtime errors so that normal flow of the application 

can be maintained. 

Advantage of Exception Handling 

The core advantage of exception handling is to maintain the normal flow of the application. An exception normally disrupts the 
normal flow of the application that is why we use exception handling. Let's take a scenario: 

1. statement 1;   

2. statement 2;   

3. statement 3;   

4. statement 4;   

5. statement 5;//exception occurs   

6. statement 6;   

7. statement 7;   

8. statement 8;   

9. statement 9;   

10. statement 10;   

Suppose there are 10 statements in your program and there occurs an exception at statement 5, the rest of the code will not be executed 
i.e. statement 6 to 10 will not be executed. If we perform exception handling, the rest of the statement will be executed. That is why we 
use exception handling in Java. 

Advantage of Exception Handling 

https://www.javatpoint.com/java-tutorial


The core advantage of exception handling is to maintain the normal flow of the application. An exception normally disrupts the 
normal flow of the application that is why we use exception handling. Let's take a scenario: 

1. statement 1;   

2. statement 2;   

3. statement 3;   

4. statement 4;   

5. statement 5;//exception occurs   

6. statement 6;   

7. statement 7;   

8. statement 8;   

9. statement 9;   

10. statement 10;   

Suppose there are 10 statements in your program and there occurs an exception at statement 5, the rest of the code will not be executed 
i.e. statement 6 to 10 will not be executed. If we perform exception handling, the rest of the statement will be executed. That is why we 
use exception handling in Java. 

Java Exception Keywords 

There are 5 keywords which are used in handling exceptions in Java. 

Keyword Description 

try The "try" keyword is used to specify a block where we should place exception code. The try block must be 

followed by either catch or finally. It means, we can't use try block alone. 

https://www.javatpoint.com/java-tutorial


catch The "catch" block is used to handle the exception. It must be preceded by try block which means we can't use 

catch block alone. It can be followed by finally block later. 

finally The "finally" block is used to execute the important code of the program. It is executed whether an exception 

is handled or not. 

throw The "throw" keyword is used to throw an exception. 

throws The "throws" keyword is used to declare exceptions. It doesn't throw an exception. It specifies that there 

may occur an exception in the method. It is always used with method signature. 

 

TRY CATCH example: 
 

public class JavaExceptionExample{   

  public static void main(String args[]){   

   try{   

      //code that may raise exception   

      int data=100/0;   

   }catch(ArithmeticException e){System.out.println(e);}   

   //rest code of the program    

   System.out.println("rest of the code...");   

  }   

}  



Output: 

Exception in thread main java.lang.ArithmeticException:/ by zero 
rest of the code... 
 

Common Scenarios of Java Exceptions 

There are given some scenarios where unchecked exceptions may occur. They are as follows: 

1) A scenario where ArithmeticException occurs 

If we divide any number by zero, there occurs an ArithmeticException. 

1. int a=50/0;//ArithmeticException   

 

2) A scenario where NullPointerException occurs 

If we have a null value in any variable, performing any operation on the variable throws a NullPointerException. 

1. String s=null;   

2. System.out.println(s.length());//NullPointerException   

 

3) A scenario where NumberFormatException occurs 

The wrong formatting of any value may occur NumberFormatException. Suppose I have a string variable that has characters, converting 
this variable into digit will occur NumberFormatException. 

1. String s="abc";   

https://www.javatpoint.com/java-variables
https://www.javatpoint.com/java-string


2. int i=Integer.parseInt(s);//NumberFormatException   

 

4) A scenario where ArrayIndexOutOfBoundsException occurs 

If you are inserting any value in the wrong index, it would result in ArrayIndexOutOfBoundsException as shown below: 

1. int a[]=new int[5];   

2. a[10]=50; //ArrayIndexOutOfBoundsException   

FINALLY example: 

The finally statement lets you execute code, after try...catch, regardless of the result: 

Example 

public class MyClass { 

  public static void main(String[] args) { 

    try { 

      int[] myNumbers = {1, 2, 3}; 

      System.out.println(myNumbers[10]); 

    } catch (Exception e) { 

      System.out.println("Something went wrong."); 

    } finally { 



      System.out.println("The 'try catch' is finished."); 

    } 

  } 

} 

  

The output will be: 

Something went wrong. 

The 'try catch' is finished. 

 

THROW example: 

The throw statement allows you to create a custom error. 

The throw statement is used together with an exception type. There are many exception types available in 
Java: ArithmeticException, FileNotFoundException, ArrayIndexOutOfBoundsException, SecurityException, etc: 

Example 

Throw an exception if age is below 18 (print "Access denied"). If age is 18 or older, print "Access granted": 

public class MyClass { 

  static void checkAge(int age) { 

    if (age < 18) { 



      throw new ArithmeticException("Access denied - You must be at least 18 years old."); 

    } 

    else { 

      System.out.println("Access granted - You are old enough!"); 

    } 

  } 

 

  public static void main(String[] args) { 

    checkAge(15); // Set age to 15 (which is below 18...) 

  } 

} 

  

The output will be: 

Exception in thread "main" java.lang.ArithmeticException: Access denied - You must be at least 18 years old. 

        at MyClass.checkAge(MyClass.java:4) 

        at MyClass.main(MyClass.java:12) 

If age was 20, you would not get an exception: 

checkAge(20); 



The output will be: 

Access granted - You are old enough! 

 
THROWS 
 
throws is a keyword in Java which is used in the signature of method to indicate that this method might throw one of the listed type 
exceptions. The caller to these methods has to handle the exception using a try-catch block. 
Syntax: 
type method_name(parameters) throws exception_list 
exception_list is a comma separated list of all the  
exceptions which a method might throw. 
 

 


	Advantage of Exception Handling
	Advantage of Exception Handling (1)
	Java Exception Keywords
	TRY CATCH example:
	Common Scenarios of Java Exceptions
	1) A scenario where ArithmeticException occurs
	2) A scenario where NullPointerException occurs
	3) A scenario where NumberFormatException occurs
	4) A scenario where ArrayIndexOutOfBoundsException occurs

	FINALLY example:
	Example

	THROW example:
	Example


